复旦大学-432统计学-2022年

一、(20分) 袋子里有: aa红球, aa黄球, bb蓝球. 有放回摸3个球, 设A={A=\{抽出的求有黄球也有红球, 且红球比黄球先取出}\}. 求:

(1)(10分) P(A)P(A);

(2)(10分) 若{\{没有摸到蓝球}\}AA概率相同, 求a:ba:b.

Solution:
[注]: 题干可以理解成A1={A_1=\{有一个红球比黄球先取出}\}, 也可以理解成A2={A_2=\{所有红球比黄球先取出}\}.
(1) 先考虑A1A_1, 有

A1={红红黄,红黄红,红黄黄,蓝红黄,红蓝黄,红黄蓝},A_1=\left\{ \text{红红黄}, \text{红黄红}, \text{红黄黄}, \text{蓝红黄}, \text{红蓝黄}, \text{红黄蓝} \right\} ,

故有

P(A1)=a3+a3+a3+3a2b(2a+b)3=3a2(a+b)(2a+b)3.P\left( A_1 \right) =\frac{a^3+a^3+a^3+3a^2b}{\left( 2a+b \right) ^3}=\frac{3a^2\left( a+b \right)}{\left( 2a+b \right) ^3}.

再考虑A2A_2, 有

A2={红红黄,红黄黄,蓝红黄,红蓝黄,红黄蓝},A_2=\left\{ \text{红红黄}, \text{红黄黄}, \text{蓝红黄}, \text{红蓝黄}, \text{红黄蓝} \right\} ,

故有

P(A2)=a3+a3+3a2b(2a+b)3=a2(2a+3b)(2a+b)3.P\left( A_2 \right) =\frac{a^3+a^3+3a^2b}{\left( 2a+b \right) ^3}=\frac{a^2\left( 2a+3b \right)}{\left( 2a+b \right) ^3}.

(2) 先计算B={B=\{没有摸到蓝球}\}, 有

P(B)=(2a2a+b)3=8a3(2a+b)3,P\left( B \right) =\left( \frac{2a}{2a+b} \right) ^3=\frac{8a^3}{\left( 2a+b \right) ^3},

P(B)=P(A1)P(B)=P(A_1), 即

8a3=3a2(a+b)8a=3(a+b)ab=35.8a^3=3a^2\left( a+b \right) \,\,\Longrightarrow \,\,8a=3\left( a+b \right) \,\,\Longrightarrow \frac{a}{b}=\frac{3}{5}.

P(B)=P(A2)P(B)=P(A_2), 即

8a3=a2(2a+3b)8a=2a+3bab=12.8a^3=a^2\left( 2a+3b \right) \,\,\Longrightarrow \,\,8a=2a+3b\,\,\Longrightarrow \frac{a}{b}=\frac{1}{2}.

二、(10分) 离散型随机变量XX的分布列是

P(X=a)=P(X=b)=P(X=a+1)=13,P(X=a)=P(X=b)=P(X=a+1)=\frac{1}{3},

其中a<b<a+1a<b<a+1. 求其方差的取值范围.

Solution:
由于Var(X)=Var(Xa)Var(X)=Var(X-a), 故不妨假设XX的取值是

P(X=0)=P(X=c)=P(X=1)=13,P(X=0)=P(X=c)=P(X=1)=\frac{1}{3},

其中c=ba(0,1)c=b-a\in (0,1), 故有EX=c+13EX=\frac{c+1}{3}, 而

EX2=c2+13,Var(X)=3c2+3(c+1)29=29[(c12)2+34][16,29).EX^2 = \frac{c^2+1}{3},\quad Var(X)=\frac{3c^2+3-(c+1)^2}{9}=\frac{2}{9}\left[ \left( c-\frac{1}{2} \right) ^2+\frac{3}{4} \right] \in \left[ \frac{1}{6},\frac{2}{9} \right) .

三、(20分) 离散型随机变量XX只取x,x+ax,x+a两个值, 其中a>0a>0, 且Var(X)=1Var(X)=1, 求aa的取值范围及XX的分布列.

Solution:
题目只给了方差的条件, 而Var(X)=Var(Xx)Var(X)=Var(X-x), 故不妨先假设XX只取0,a0,a两个值, 且

Var(X)=a2pa2p2=a2p(1p)=1,Var\left( X \right) =a^2p-a^2p^2=a^2p\left( 1-p \right) =1,

其中p=P(X=a)p=P(X=a), 由于p(1p)14p(1-p)\le \frac{1}{4}, 因此a2a\ge 2. 且当aa给定时, pp是可以解出的, 即

p2p+1a2=0p=1±14a22.p^2-p+\frac{1}{a^2}=0 \Longrightarrow p=\frac{1\pm \sqrt{1-\frac{4}{a^2}}}{2}.

所以XX的分布列是

P(X=x)=1+14a22,P(X=x+a)=114a22,P\left( X=x \right) =\frac{1+\sqrt{1-\frac{4}{a^2}}}{2},\quad P\left( X=x+a \right) =\frac{1-\sqrt{1-\frac{4}{a^2}}}{2},

或者是

P(X=x)=114a22,P(X=x+a)=1+14a22.P\left( X=x \right) =\frac{1-\sqrt{1-\frac{4}{a^2}}}{2},\quad P\left( X=x+a \right) =\frac{1+\sqrt{1-\frac{4}{a^2}}}{2}.

四、(20分) 设有随机向量(XY)\left( \begin{array}{c} X\\ Y\\ \end{array} \right), 已知它经过任意旋转变换后

(cosαsinαsinαcosα)(XY)\left( \begin{matrix} \cos \alpha& \sin \alpha\\ -\sin \alpha& \cos \alpha\\ \end{matrix} \right) \left( \begin{array}{c} X\\ Y\\ \end{array} \right)

仍与(XY)\left( \begin{array}{c} X\\ Y\\ \end{array} \right)同分布, 试解决下述问题:

(1) 求P(0<Y<X)P(0<Y<X);

(2) 求YX\frac{Y}{X}的分布.

Solution:
(1) 设X,YX,Y的密度函数是fX,Y(x,y)f_{X,Y}(x,y), 对旋转变换(U,V)=(X,Y)AT(U,V)=(X,Y)A^T, 由变量变换法, 有

fU,V(u,v)=fX,Y((u,v)A)A=fX,Y((u,v)A),f_{U,V}\left( u,v \right) =f_{X,Y}\left( \left( u,v \right) A \right) \left| A \right|=f_{X,Y}\left( \left( u,v \right) A \right) ,

另一方面, 由于U,VU,VX,YX,Y同分布, 故fU,V(u,v)=fX,Y(u,v)f_{U,V}\left( u,v \right) =f_{X,Y}\left( u,v \right), 综上所述, 有

fX,Y(x,y)=fX,Y((x,y)A),f_{X,Y}\left( x,y \right) =f_{X,Y}\left( \left( x,y \right) A \right) ,

对任意旋转变换AA成立. 最直观的一个表达是

fX,Y(rcosθ,rsinθ)=fX,Y(rcosα,rsinα)=fX,Y(r,0)=fX,Y(0,r).f_{X,Y}\left( r\cos \theta ,r\sin \theta \right) =f_{X,Y}\left( r\cos \alpha ,r\sin \alpha \right) = f_{X,Y}\left( r,0 \right) =f_{X,Y}\left( 0,r \right) .

作极坐标变换

{X=RcosΘ,Y=RsinΘ,\begin{cases} X=R\cos \Theta ,\\ Y=R\sin \Theta ,\\ \end{cases}

由变量变换法, 有(R,Θ)(R,\Theta)的分布是

fR,Θ(r,θ)=rfX,Y(rcosθ,rsinθ)=rfX,Y(r,0)=ru(r),r(0,+),θ(0,2π),f_{R,\Theta}\left( r,\theta \right) =rf_{X,Y}\left( r\cos \theta ,r\sin \theta \right) =rf_{X,Y}\left( r,0 \right) =ru\left( r \right) ,\quad r\in \left( 0,+\infty \right) ,\theta \in \left( 0,2\pi \right) ,

可因式分解, 因此R,ΘR,\Theta独立, 且fΘ(θ)f_{\Theta}(\theta)是常数, 故ΘU(0,2π)\Theta \sim U(0,2\pi). 因此

P(0<Y<X)=P(Θ(0,π4))=18.P\left( 0<Y<X \right) =P\left( \Theta \in \left( 0,\frac{\pi}{4} \right) \right) =\frac{1}{8}.

(2) T=YX=tanΘch(0,1)T=\frac{Y}{X}=\tan \Theta \sim \mathrm{ch}\left( 0,1 \right), 标准柯西分布, 可利用分布函数法说明: 这里要注意Θ\Theta取值是(0,2π)(0,2\pi), 对不上反函数arctan\arctan的定义域, 要仔细讨论. 对任意t>0t>0, 有

{Tt}={tanΘt}={Θ[0,arctant](π2,arctant+π](3π2,2π]},\begin{aligned} \left\{ T\le t \right\} &=\left\{ \tan \Theta \le t \right\}\\ &=\left\{ \Theta \in \left[ 0,\mathrm{arc}\tan t \right] \cup \left( \frac{\pi}{2},\mathrm{arc}\tan t+\pi \right] \cup \left( \frac{3\pi}{2},2\pi \right] \right\}\\ \end{aligned},

P(Tt)=π+2arctant2π=12+arctantπP(T\le t)= \frac{\pi + 2\arctan t}{2\pi}=\frac{1}{2} + \frac{\arctan t}{\pi}, t>0t>0. 再讨论对任意t<0t<0, 有

{Tt}={tanΘt}={Θ(π2,arctant+π](3π2,arctant+2π)}\begin{aligned} \left\{ T\le t \right\} &=\left\{ \tan \Theta \le t \right\}\\ &=\left\{ \Theta \in \left( \frac{\pi}{2},\mathrm{arc}\tan t+\pi \right] \cup \left( \frac{3\pi}{2},\mathrm{arc}\tan t+2\pi \right) \right\}\\ \end{aligned}

P(Tt)=π+2arctant2π=12+arctantπP(T\le t)= \frac{\pi + 2\arctan t}{2\pi}=\frac{1}{2} + \frac{\arctan t}{\pi}, t<0t<0. 综上所述有

FT(t)=12+arctantπ,tR,F_T\left( t \right) =\frac{1}{2}+\frac{\mathrm{arc}\tan t}{\pi},\quad t\in R,

求导得

fT(t)=1π(1+t2),tR,f_T\left( t \right) =\frac{1}{\pi \left( 1+t^2 \right)},\quad t\in R,

这是标准柯西分布.

Remark: 无论对于概率密度函数或是广义概率密度(如概率质量函数) f(x,y)f(x,y), 正交变换 (U,V)=(X,Y)AT(U,V)=(X,Y)A^T 的密度函数都满足 fU,V(u,v)=fX,Y((u,v)A)f_{U,V}(u,v)=f_{X,Y}((u,v)A). 初等统计中, 很多人可能没有办法理解非连续分布也可以有 ff, 另外一个方法是:

(1) 考虑一个幅角从 aabb 的扇形 S(a,b)S(a,b), 根据旋转不变性有

P((X,Y)S(a,b))=P((X,Y)S(a+θ,b+θ)),θ,P\left((X,Y)\in S(a,b) \right) = P\left((X,Y)\in S(a+\theta,b+\theta) \right), \quad \forall \theta,

因此有 P((X,Y)S(0,π/4))=P((X,Y)S(π/4,π/2))==P((X,Y)S(7π/4,2π))P\left((X,Y)\in S(0,\pi/4) \right) = P\left((X,Y)\in S(\pi/4,\pi/2) \right) = \cdots = P\left((X,Y)\in S(7\pi/4,2\pi) \right) 这八部分相等, 且它们相加为 11, 故 P(0<Y<X)=P((X,Y)S(0,π/4))=1/8P\left(0<Y<X\right) = P\left((X,Y)\in S(0,\pi/4) \right)=1/8.

(2) P(Θ(a,b))=P((X,Y)S(a,b))=P((X,Y)S(0,ba))P(\Theta \in (a,b)) = P\left((X,Y)\in S(a,b) \right) =P\left((X,Y)\in S(0,b-a) \right), 再用类似的分块相等的办法(柯西方程, 见应坚刚划题6.4)求出

P((X,Y)S(0,ba))=ba2π,P\left((X,Y)\in S(0,b-a) \right)=\frac{b-a}{2\pi},

P(Θ(a,b))ba2πP(\Theta \in (a,b))\in \frac{b-a}{2\pi}. 这是均匀分布, 再用 arctan\arctan 证明即可.

柯西方程: 由于不难推出可加性 P((X,Y)S(0,a+b))=P((X,Y)S(0,a))+P((X,Y)S(0,b))P((X,Y)\in S(0,a+b)) = P((X,Y)\in S(0,a))+P((X,Y)\in S(0,b)), 即有 F(a+b)=F(a)+F(b)F(a+b) =F(a)+F(b), 这是柯西方程, 故有 F(x)=xF(1)F(x)=xF(1), 均匀分布.

五、(20分) 已知(X,Y)N(0,0;1,1;12)(X,Y)\sim N(0,0;1,1;\frac{1}{2}), 求P(X>0,Y>0)P(X>0,Y>0).

Solution:
W=23(Y12X)W=\frac{2}{\sqrt{3}}(Y-\frac{1}{2}X), 则有EW=0EW=0, Var(W)=1Var(W)=1, 且Cov(X,W)=0Cov(X,W)=0, 故有X,WX,W独立同服从标准正态分布. 进一步考虑到

P(X>0,Y>0)=P(X>0,Y>0)=P(X<0,Y<0),P\left( X>0,Y>0 \right) =P\left( -X>0,-Y>0 \right) =P\left( X<0,Y<0 \right) ,

发现

P(X>0,Y>0)=12P(XY>0)=12P(YX>0),P\left( X>0,Y>0 \right) =\frac{1}{2}P\left( XY>0 \right) =\frac{1}{2}P\left( \frac{Y}{X}>0 \right) ,

再利用WW作处理, 即

{YX>0}={3W2+12XX>0}={WX>13}.\left\{ \frac{Y}{X}>0 \right\} =\left\{ \frac{\frac{\sqrt{3}W}{2}+\frac{1}{2}X}{X}>0 \right\} =\left\{ \frac{W}{X}>-\frac{1}{\sqrt{3}}\right\} .

利用WX\frac{W}{X}服从标准柯西分布, 有

P(X>0,Y>0)=1233+1π(1+t2)dt=13.P\left( X>0,Y>0 \right) =\frac{1}{2}\int_{-\frac{\sqrt{3}}{3}}^{+\infty}{\frac{1}{\pi \left( 1+t^2 \right)}dt}=\frac{1}{3}.

六、(10分) X1,,Xn,X_1,\cdots,X_n,\cdots是i.i.d.的二阶矩存在随机变量, Yn=i=1nXiY_n = \sum_{i=1}^n X_i, 问: {Ynn2}\{\frac{Y_n}{n^2}\}是否服从大数定律.

Solution:
[法一]: 令Zn=Ynn2Z_n = \frac{Y_n}{n^2}, 直接计算协方差, 首先有

Cov(Yk,Yk+l)=Cov(j=1kXj,j=1k+lXj)=kVar(X1),Cov\left( Y_k,Y_{k+l} \right) =Cov\left( \sum_{j=1}^k{X_j},\sum_{j=1}^{k+l}{X_j} \right) =kVar\left( X_1 \right) ,

进一步有, 当ll\rightarrow \infty, 有

Cov(Zk,Zk+l)=1k2(k+l)2Cov(Yk,Yl)=Var(X1)k(k+l)20,Cov\left( Z_k,Z_{k+l} \right) =\frac{1}{k^2\left( k+l \right) ^2}Cov\left( Y_k,Y_l \right) =\frac{Var\left( X_1 \right)}{k\left( k+l \right) ^2}\rightarrow 0,

由伯恩斯坦条件, {Ynn2}\{\frac{Y_n}{n^2}\}服从大数定律.
[法二]: 由强大数律, 有Zn=1nYnn0EX1=0Z_n=\frac{1}{n}\cdot \frac{Y_n}{n}\rightarrow 0\cdot EX_1=0, a.s., 由stolz定理, 有

limnk=1nZkn=limnZn=0,a.s.\underset{n\rightarrow \infty}{\lim}\frac{\sum_{k=1}^n{Z_k}}{n}=\underset{n\rightarrow \infty}{\lim}Z_n=0, \text{a.s.}

七、(10分) X1,,XnX_1,\cdots,X_n是i.i.d.服从N(μ,σ2)N(\mu,\sigma^2)的随机变量, FF是其分布函数, 求2i=1nlnF(Xi)-2\sum_{i=1}^n \ln F(X_i)的分布.

Solution:
首先记Yi=F(Xi)U(0,1)Y_i = F(X_i)\sim U(0,1), 只需计算Z1=2Y1Z_1=-2Y_1的分布, 由分布函数法, 对z>0z>0, 有

P(Z1z)=P(2lnY1z)=P(Y1e2z)=1e2z,P\left( Z_1\le z \right) =P\left( -2\ln Y_1\le z \right) =P\left( Y_1\ge e^{-2z} \right) =1-e^{-2z},

这是均值为1/21/2的指数分布, 也是χ2(2)\chi^2(2)分布, 由可加性, 得

2i=1nlnF(Xi)χ2(2n).-2\sum_{i=1}^n \ln F(X_i)\sim \chi^2(2n).

八、(10分) X1,,X6X_1,\cdots,X_6是i.i.d.的U(0,1)U(0,1)随机变量, 求Var(2X(2)+3X(3))Var(2X_{(2)}+3X_{(3)}).

Solution:
直接计算, 有

Var(2X(2)+3X(3))=4Var(X(2))+9Var(X(3))+12Cov(X(2),X(3)),Var\left( 2X_{\left( 2 \right)}+3X_{\left( 3 \right)} \right) =4Var\left( X_{\left( 2 \right)} \right) +9Var\left( X_{\left( 3 \right)} \right) +12Cov\left( X_{\left( 2 \right)},X_{\left( 3 \right)} \right) ,

而边际分布X(2)Beta(2,5)X_{(2)}\sim Beta(2,5), X(3)Beta(3,4)X_{(3)}\sim Beta(3,4), 故两个方差项可以直接计算, 即

4Var(X(2))=410728=1098,9Var(X(3))=912728=2798,4Var\left( X_{\left( 2 \right)} \right) =\frac{4\cdot 10}{7^2\cdot 8}=\frac{10}{98},\quad 9Var\left( X_{\left( 3 \right)} \right) =\frac{9\cdot 12}{7^2\cdot 8}=\frac{27}{98},

协方差项可以记公式i(n+1j)(n+1)2(n+2)\frac{i(n+1-j)}{(n+1)^2(n+2)}(2019复旦应统第七题), 也可以先写出联合密度

g2,3(x,y)=6!1!1!1!3!x(1y)3=6!1!3!x(1y)3,0<x<y<1,g_{2,3}\left( x,y \right) =\frac{6!}{1!1!1!3!}x\cdot \left( 1-y \right) ^3=\frac{6!}{1!3!}x\left( 1-y \right) ^3,\quad 0<x<y<1,

计算混合矩, 即

E(X(2)X(3))=6!3!010yx2y(1y)3dxdy=6!3!301y4(1y)3dy=6!3!4!3!8!3=856.\begin{aligned} E\left( X_{\left( 2 \right)}X_{\left( 3 \right)} \right) &=\frac{6!}{3!}\int_0^1{\int_0^y{x^2y\left( 1-y \right) ^3dx}dy}\\ &=\frac{6!}{3!3}\int_0^1{y^4\left( 1-y \right) ^3dy}\\ &=\frac{6!3!4!}{3!8!3}=\frac{8}{56}.\\ \end{aligned}

因此协方差为Cov(X(2),X(3))=856649=298.Cov\left( X_{\left( 2 \right)},X_{\left( 3 \right)} \right) =\frac{8}{56}-\frac{6}{49}=\frac{2}{98}. 将所有计算结果汇总得

Var(2X(2)+3X(3))=6198.Var\left( 2X_{\left( 2 \right)}+3X_{\left( 3 \right)} \right) =\frac{61}{98}.

九、(10分) X1,X2,X3X_1,X_2,X_3是i.i.d.的U(0,θ)U(0,\theta)随机样本, 设aX(1),bX(3)aX_{(1)},bX_{(3)}θ\theta的无偏估计, 求a,ba,b并比较它们的何者更有效.

Solution:
由于X(1)θBeta(1,3)\frac{X_{(1)}}{\theta}\sim Beta(1,3), 故EX(1)=14θEX_{(1)}=\frac{1}{4}\theta, Var(X(1))=380θ2Var(X_{(1)})=\frac{3}{80}\theta^2, 故a=4a=4, 且Var(aX(1))=35θ2Var(aX_{(1)})=\frac{3}{5}\theta^2. 同理X(3)Beta(3,1)X_{(3)}\sim Beta(3,1), 故EX(3)=34θEX_{(3)}=\frac{3}{4}\theta, Var(X(3))=380θ2Var(X_{(3)})=\frac{3}{80}\theta^2, 故b=43b=\frac{4}{3}, 且Var(bX(3))=160θ2Var(bX_{(3)})=\frac{1}{60}\theta^2. 可以看出bX(3)bX_{(3)}更有效.

十、(10分) 设X1,,XnX_1,\cdots,X_n是i.i.d.的N(μ,16)N(\mu,16)随机样本, μ\mu的先验分布是N(a,b2)N(a,b^2), 求后验分布.

Solution:
考虑充分统计量XˉμN(μ,16n)\bar{X}|\mu \sim N(\mu,\frac{16}{n}), 有联合密度是

p(x,μ)=p(xμ)π(π)=Ce(xμ)2216ne(μa)22b2=Ce(xμ)2216ne(μa)22b2=Ceb2(xμ)2+16n(μa)2216nb2=Ceb2(xμ)2+16n(μa)2216nb2=Ce(16n+b2)μ22(b2x+16na)μ+(b2x2+16na2)216nb2=C1(x)e(μb2x+16nab2+16n)2216nb216n+b2,\begin{aligned} p\left( x,\mu \right) &=p\left( x|\mu \right) \pi \left( \pi \right) =C\cdot e^{-\frac{\left( x-\mu \right) ^2}{2\cdot \frac{16}{n}}}\cdot e^{-\frac{\left( \mu -a \right) ^2}{2b^2}}\\ &=C\cdot e^{-\frac{\left( x-\mu \right) ^2}{2\cdot \frac{16}{n}}}\cdot e^{-\frac{\left( \mu -a \right) ^2}{2b^2}}\\ &=Ce^{-\frac{b^2\left( x-\mu \right) ^2+\frac{16}{n}\left( \mu -a \right) ^2}{2\cdot \frac{16}{n}b^2}}\\ &=Ce^{-\frac{b^2\left( x-\mu \right) ^2+\frac{16}{n}\left( \mu -a \right) ^2}{2\cdot \frac{16}{n}b^2}}\\ &=Ce^{-\frac{\left( \frac{16}{n}+b^2 \right) \mu ^2-2\left( b^2x+\frac{16}{n}a \right) \mu +\left( b^2x^2+\frac{16}{n}a^2 \right)}{2\cdot \frac{16}{n}b^2}}\\ &=C_1(x)e^{-\frac{\left( \mu -\frac{b^2x+\frac{16}{n}a}{b^2+\frac{16}{n}} \right) ^2}{2\cdot \frac{\frac{16}{n}b^2}{\frac{16}{n}+b^2}}},\\ \end{aligned}

发现有一个正态分布的核, 故后验分布是

μXˉN(b2Xˉ+16nab2+16n,16nb216n+b2)=N(n16Xˉ+1b2an16+1b2,1n16+1b2).\mu |\bar{X}\sim N\left( \frac{b^2\bar{X}+\frac{16}{n}a}{b^2+\frac{16}{n}},\frac{\frac{16}{n}b^2}{\frac{16}{n}+b^2} \right) =N\left( \frac{\frac{n}{16}\bar{X}+\frac{1}{b^2}a}{\frac{n}{16}+\frac{1}{b^2}},\frac{1}{\frac{n}{16}+\frac{1}{b^2}} \right) .

可以看出后验均值是样本信息与先验信息的加权平均.

十一、(10分) 设X1,,XnX_1,\cdots,X_n是i.i.d.的U(0,θ)U(0,\theta)随机样本, 考虑假设检验问题

H0:θ1vsH1:θ>1H_0:\theta \le 1 \quad \mathrm{vs} \quad H_1: \theta >1

构造拒绝域W={X(n)c}W=\{X_{(n)}\ge c \}. 回答下述问题:

(1)(5分) α=0.05\alpha = 0.05, 求cc;

(2)(5分) 当θ=1.5\theta=1.5, 为使得犯第二类错误的概率β0.1\beta\le 0.1, 求至少要多少样本量.

Solution:
(1) 为使显著性水平为0.050.05, 有

0.05=supθ1Pθ(X(n)c)=Pθ=1(X(n)c)=(1c)n,0.05 = \underset{\theta \le 1}{\mathrm{sup}}P_{\theta}\left( X_{\left( n \right)}\ge c \right) =P_{\theta =1}\left( X_{\left( n \right)}\ge c \right) =\left( 1-c \right) ^n,

解得c=0.951nc=0.95^{\frac{1}{n}}.
(2) 犯第二类错误的概率是

β(1.5)=Pθ=1.5(X(n)<0.951n)=(0.951n1.5)n=0.951.5n,\beta \left( 1.5 \right) =P_{\theta =1.5}\left( X_{\left( n \right)}<0.95^{\frac{1}{n}} \right) =\left( \frac{0.95^{\frac{1}{n}}}{1.5} \right) ^n=\frac{0.95}{1.5^n},

令其小于等于0.10.1, 得

0.951.5n0.1nln9.5ln1.5n6.\frac{0.95}{1.5^n}\le 0.1 \Longrightarrow \,\,n\ge \frac{\ln 9.5}{\ln 1.5}\,\,\Longrightarrow \,\,n\ge 6.